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The structures of the boundary layer are investigated using the example of the axisymmetric problem of the theory of elasticity 
for a radially multilayered cylinder with alternating hard and soft layers. On the basis of an asymptotic analysis of the problem, 
an applied theory of stretcMng is proposed, which takes into account weakly decaying boundary-layer solutions. The propagation 
of asymmetric waves in a radially rnultilayered cylindrical waveguide is investigated. © 1998 Elsevier Science Ltd. All fights reserved. 

It was shown in [1, 2] that for multilayered bodies with alternating hard and soft layers, weakly decaying 
boundary-layer solutions exist which penetrate fairly far into the depth of the region and which provide 
an important correction to the penetrating solutions. The method used in those papers was extended 
in [3] to problems of steady torsional oscillations of a radially multilayered cylinder with alternating 
hard and soft layers. 

1. We will consid,=r the axisymmetric problem of the theory of elasticity for a circular radially 
multilayered cylinder consisting of  alternating hard and soft layers with numbers n = 2r - 1. We 
will assume that the inner and outer layers are hard. Each hard layer is given an odd number 
j = 1, 3 . . . . .  n, whik: each soft layer is given an even number i = 2, 4 . . . . .  n - 1. We will assume, for 
simplicity, that the elastic properties of all the hard and soft layers are the same: the shear moduli 
Gj  = Gr, Gi -- G s, Poisson's ratios vj = v ,  v i = Vs, and the densities m ,  = m ,  m i = ms.  Suppose the 
cylinder occupies a volume F = {r e [r0, rl], ~0 ~ [0, 2~], z ~ [-L, L]}. Tl~e inner and outer radii of the 
kth layer will be denoted by r0~ and ruo respectively. 

The equations of equilibrium of the kth layer in terms of displacements in dimensionless variables 
have the form 

1 1 30t = 0  
Aup~ - ~ -  Upk + 1 - 2v k o~p 

1 ~0k = 0 Au;t + 
1 - 2 v i  3 4 

(1.1) 

Here 

r Z 
P : ' ~ "  ~'=~Ro' P~[Pol,Pl~] 

L _ u,k = u a  
;~t-t,/l, l : ~ ,  ~ - ~ - .  ~ Ro 

Ro=r° l+r t~  O k ~uPk u--L4 ~ur# 
2 ' = - '~ 'p  + p O~ 
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/)2 0 2 I ~) 

We will assume that the side surface of the cylinder is stress-free, i.e. 

o ~  (p01 , ; )  = o~ (p0  ,,~) = 0 

ofp~)(p,n, ;)  = o(p~)(pi n, ~) = 0 (1.2) 

We will assume the connection between the layers to be rigid, which means that the following matching 
conditions are satisfied 

~rm(Plm,~):~m(Po.m+l,~),Um(PJm,~)=U~,+J(Po,=+1,~) 
_ :_(m) ~(m)~ 

• r m - ~Upp ,~p~ ,, u m = (upm,uo,); m= 1,2 ..... n- I 

(1.3) 

We will assume that arbitrary boundary conditions, which maintain the cylinder in equilibrium, are 
specified on the ends of the cylinder. 

We will seek the solution of problems (1.1)-(1.3) in the form [4] 

upk =uk(p)a'(~), ur~=wk(p)a(~) (1.4) 

where the function a(~) is subject to the condition 

a"(~)-o~2a(~)=O 

where a is a certain parameter. 
Substituting (1.4) into (1.1)-(1.3) we obtain the following non-self-conjugate eigenvalue problems 

(/-ok + ~k + °c2(/ak +/~k - ~k)) vk = 0 

Ml (Or 2) vl (Pol) = M. (O~ 2 ) v. (Pl.) = 0 (1.5) 

Mm (a 2) v,. (Plm) : M.,+I (a 2) v..+1 (Po,.,+l) 

vm (Plm) = v,.+~ (Po.m+l) 

where vk = (Uk, wk) and Ltk and Mg are matrix differential operators of the form 

I: I I: 1 :,l L0k= , -~-  o , ~k = 2(l-vk) 
A~ 0 

0 2(1 - v k) d-"p 
L2k= 1 d +1  0 

II 1-  2v k 0 

I~ (1- vk) 2(1-v~) L3k = 

1 - 2v k 

Mk(ct2) -- Mok + Mlk +Ot2(M2k -Mlk) 

Mok _- k ap P J d 

ck Tp 
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2. We will introduce the small parameterp = Gs/Gr as a characteristic of the relative stiffness of the 
layers and we will investigate eigenvalue problem (1.5) asp -~ 0. 

Eigenvalue problem (1.5) reduces to investigating a certain homogeneous algebraic system with a 
matrix whose elements depend analytically on the eigenvalue parameter a and linearly on the parameter 
p. Applying the theory of perturbations of linear operators [5] to this algebraic system, we conclude 
that the following theorem holds. 

Theorem. The spectrum A(p) of problem (1.5) asp -~ 0 can be represented in the form 

A(p) = A0(p) u A_(p) kJ A(+D (p) w A(+Z)(p) 

where 
1. Ao(p) consists of the double eigenvalue % ffi 0; 
2. A_(p) consists of 2(r - 1) real eigenvalues of the form 

a, = P'~'qt + 0 ( / ~ )  (2.1) 

were ~t is a non-zero eigenvalue of the homogeneous Jacobi algebraic system 

CX -~2BX = 0 

X = ( X , , X  3 ..... Xn), B=cfiag~b#~ b.of(l+vr)(p~/-po2/) 

I c ! -c  I 0 .-- 0 0 0 ! / 1-1 
-c! c I+c  3 -c  3 ... 0 0 0 Po,j+2 

C =  . . . . . . . . . . . . . . . . . . . . .  , c j =  In P i /  J 

| 0  0 0 . . .  0 - c . _ 2  c . - 2  

(2.2) 

3. A~)(p) consists ,of r sets of eigenvalues of the form 

a~O ~) =or# + O(p s) 

where % is the root of the equation 

014,~2 . ,2 E.2 2 2 2 2 2 2 vo/p,U~joo +iX Pojfu(a) E;o I + a  pu/oj (a) E~i o + 

+fo/(iX) f i /(a)  E211 - 4/t -2 (fo/(a)  + f l / (a))  = 0 

Ek~T = J ~ ( ~ o k )  Yy(0~k)-Jy(~O~k) Y~(aP0k) 

fl~j(a)fa2p~ +2(v, -1) ;  ~,'f =0,1 

4. A~)(p) consist of r - 1 sets of eigenvalues of the form 

a ~  ) = a,~ + O(p 8) 

where % is the root of the equation 

ct2O2d)21(E~, + E2oo + E~o + E/2o,)-4a(1 - v,) poip~i(EiooEao + Ei, ,Eio,)-  

. .4a(l_ vs) 2 PoiP.(Eil,Eilo + Eioogiol) + 

+16(1 - v.)2 Po~P.E~ooEi~ , - 4n -2 (p2oi + p~) = 0 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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Here Ja, Ya are Bessel functions of the first and second kind respectively and 8 = 1 if none of the 
roots of Eqs (2.4) and (2.6) is the same, or if there are some roots that are the same but with the condition 
that i ~ j + 1, i ~ j - 1, and 8 = 1/2 if when i = j + 1 or i = j - 1 the corresponding equations have at 
least a pair of similar roots. 

The double eigenvalues (~0 = 0 define Saint-Venant solutions, which penetrate without attenuation 
inside the cylinder. These solutions have the form 

~(o) 
pk = Do(-VrPXo +O(p)), u (0) = Xo(E 0 +Dot ) 

X 0 = (bll +b33+...+bnn) -~  (2.7) 

(E0 and Do are arbitrary constants). 
The boundary-layer solutions are defined as the sum of elementary solutions of  the form 

(t) = uja(p) a;(~), u~ ) = wta(p) a,(~) Upk 

at (4) = D, exp(a,~) + E, exp(-at~) 

Here Dt and JEt are arbitrary constants, o~, (Ukt, WO) are eigenvalues and eigenfunctions of  problem 
(1.5) and R e  o~ > 0. 

It follows from the theorem that in the case of a radially multilayered cylinder with alternating hard 
and soft layers there is a finite number of  eigenvalues belonging to A~_~), which, for small p, tend to 
zero. This means that the elementary solutions corresponding to the lower part of  the spectrum of A__ 
(p) asp  ~ 0 can penetrate fairly deeply far from the ends and provide a considerable correction to the 
penetrating solution. This leads to a breakdown of the Saint-Venant principle in its classical formulation. 
The set of  these solutions will be called a weak boundary layer. The eigenvalues belonging to A(+l)(p), 
A(+2)(p) as p ~ 0 have finite limits. The elementary solutions corresponding to the upper part of the 
spectrum of A~)(p) and A(+2)(p) decay strongly with distance from the ends. This set of solutions will be 
called a strong boundary layer. 

Note that for smallp the stratification of the spectrum into "lower" and "higher" parts will be more 
pronounced the greater the difference inft~O~k --supt~lr2~t. 

The distribution of  the displacements over the radii of  the corresponding weak boundary layer in 
the elementary solutions can be represented in terms of the eigenfunctions Xt = (Xlt, Xat . . . . .  X~t) of 
algebraic system (2.2) as follows: 

uk, = F,(Uk, o +O(p)) ,  wu = F,(W~o +O(p))  

Uj, o =-vrpx ,, Wj, o = x j ,  

Uit 0 = (4tOi (v s - 1 ) ( ' ~ 0 i  - '~li ) ) - I  [((4(V s _ 1) V r + 1) x 

×pO2ip-I (p2 - P12i) (.l:Oi _ X i i )  _ PO)i.CliXi_ I't ) - -  

- ( ( 4 ( V  s 1) V r + l )  2 -I  2 2 - P t i P  ( P - P o i ) ( ' C o i - ' C l i ) - P ( l ) i ' C o i ) X i + l , t ]  

W ito = ( '~oi - ' t l i  ) - I  (,CoiXi+ I't - "CliXi-l , t  ) 

"COl = In p = In ~ p  O)  i = Pi2i - P02i 
POi' "[li P] i '  

(2.8) 

Here Ft is a normalizing factor. 

3. It was shown in [1, 2] that the lower part of the spectrum corresponds to a certain applied theory 
which, in addition to the penetrating solutions, includes all weak boundary layers. 

The penetrating solutions with a weak boundary layer can be given the following mechanical 
interpretation. We will assume that the stress-strain state of the hard layers corresponds to 
pure stretching along the axis of symmetry, while the soft layers possess Winkler shear properties. 
These hypotheses enable the displacements in the hard and soft layers to be represented in the 
form 
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Upj = -Vrpg ~(~), u U = gj(~) 

Upi ---- 0 ,  U~i = '~0~ ('~oigi+! (4)-- "Cligi-I (4)) 

The stress-strain state in each of the hard and soft layers will then be as follows: 

o(J) = 2G r (1 + v r) gj (4) 

o(o 
p; = Gs (p(,t0 i _ Xl i ) ) - !  ( g i + l  ( ; )  - -  gi-I (4)) 

(3.1) 

(3.2) 

The remaining components of the stress tensors are zero. In order to obtain the boundary-value 
problem corresponding to the chosen model of the stress-strain state, we will use the Lagrange 
variational principle 

5FI - 5A = 0 (3.3) 

where ~1 is the variation of the work done by the external forces and 5I-I is the variation of the 
deformation energy. 

To determine 5,4 we will use, for example, the fact that the following boundary conditions are specified 
on the ends 

u ~ ( p , - / )  = O, o ~ ) ( l )  = Ook 

Ook=Ooj, Pe[Poj,Ptj];  Ook=O, Pe[poi,pli] (3.4) 

Assuming ~gj to be independent variations, we obtain the following boundary-value problem from 
the variational equation (3.3) taking (3.1), (3.2) and (3.4) into account 

-Bg" + peg  = 0 (3.5) 

g(-l) = 0, Bg'(/) = d (3.6) 

where 

g=(gl,g3 ..... gn), d=(dl ,d3 ..... dn), dj=(OjOoj/(2Gr) 

If the solution of Eq. (3.5) is sought in the form 

g = X a ( 4 ) ,  a = pY:rl 

we arrive at problem (3.2). 
In view of the fact that problem (2.2) is self-conjugate, the eigenvectors Xt = (Xu, X3t . . . . .  Xnt) cor- 

responding to the eigenvalue Xt = rl 2 may be subject to the condition 

n 
(BXt,Xk) = ~-b~XjtXji=5,k (3.7) 

j = l , 3  .... 

where k0 = 0 is the eigenvalue vector and the eigenvector Xo -- (X0 . . . . .  Xo) corresponds to it, where 
X0 is defined by the last formula of (2.1). 

The general solution of Eq. (3.5) can be represented in the form 

r - I  
g(~) = Xo(Eo + Dot)+ Y~Xt (E t exp(-a,~)+ D, exp(a,~)) 

t=l  

The constants Eo, Do, Et and Dt can be found from (3.6), taking (3.7) into account, as follows: 
n 

D0=X 0 Y.dj, Eo = lD o 
j = l , 3  .... 

n 
D, = (2a t ch(2atl)) -j exp(a,l) ~.djXjt, E t = -exp(-2at!)D,  

j=l,3 .... 
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It can be seen from (3.1) that the displacement field corresponding to the particular solution 
go = Xo(Eo + Do~) is equivalent to the Saint-Venant solution. The solution corresponding to the 
non-zero eigenvalues tit is the first approximation in p of the weak boundary layer. 

4. As an example we will consider a three-layer cylinder. In this case 

_(b33 ~V2Xo ' X13 = -  Xo, X 0 =(b l l  +b33) - ~  x~ = (x~,,x13). x .  - ~.-~--~-) 

For a three-layer cylinder with parameters: (1) Pol = 0.3; Pn = 0.4; Po3 ffi 0.8; P13 = 1; v, = 0.25 and (2) Pol = 0.8; 
Pll ffi 0.85; P03 = 0.95; P13 = 1; vr --- 0.25 we obtain correspondingly "ql = 4.4 and 1"11 = 12.7. 

In Fig. 1, for a three-layer cylinder, we show curves of the attenuation factor of the weak boundary-layer solution 
as a function of the parameter - lgp in cases 1 and 2, whenp ~ [10 "4, 10-1]. It can be seen that as the stiffness of 
the filler increases the depth of penetration of the weak boundary layer is reduced. Also, for a cylinder with a fairly 
soft filler the weak boundary-layer solutions penetrate fairly far into the depth of the region. The depth of penetration 
of the weak boundary layer increases as the cylinder thickness increases. 

For a single-layer cylinder with an inner radius P0 = 0.8 and an outer radius 01 = 1 the attenuation factors of 
the boundary-layer solutions are 2.8. 

5. Consider the propagation of  steady axisymmetric elastic waves in a radially multilayered cylindrical 
waveguide, consisting of alternating hard and soft layers with number n = 2r - 1. 

Assuming that the side surfaces are stress-free and the connection between the layers is rigid, 
substituting into the equations of  motion 

uk(p, ~, 0 = vk(p)exp(i(a/~ - oJt)) 

we obtain the eigenvalue problems 

(Lok +i¢/a, -ct2L3k +~2L4k)vk =0 

Nl (¢X)vl (Pol) = N. (ct)v. (Pl.) = 0 

N~ (c0vm (p~) = N=+t (a)v.+l (Po,.+~) 

v.(p~m) = v,~+,(po,~+l) 

(5.1) 

where L4k and Nk are matrix operators of the form 

3 

o/ z a p 
Fig. 1. 
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I1 : 0 I L4k = e~.2 , N k (¢t) = Mok + iaM2k 

. 2  __ moto2Ro 2 e,=fG, l ~ = ~ 2_(I - vk).'~ Yz 
G O ' ~,m kj ' ~tt~ ~, 1-2v~ J ek 

Gk _ G~ m k 
- ~ o o '  mk = - mo 

is the dimensionless angular frequency, to is the frequency of the oscillation and Go and m0 are certain 
characteristic parameters which have the dimensions of shear modulus and density. 

6 .  The determination of the wave pattern in a radially multilayered cylindrical waveguide involves 
constructing the dispersion curves a~ = oh(f1) defined by the eigenvalue set (5.1). 

We know that homogeneous waves, propagating along the axis of the cylinder and transferring energy, 
correspond to real eigenvalues o~ of eigenvalue problem (5.1). Imaginary and complex eigenvalues o~ 
of problem (5.1) define inhomogeneous waves which do not transfer energy. 

We will now investigate the real dispersion sets o~(£1) since, for unbounded bodies, the main 
characteristics of these waveguides are real dispersion curves ob = oh(f0. 

Problem (5.1) with a = 0 describes thickness resonances. In the (a, f~) plane each curve intersects 
the frequency axis at the point (0, f~), where ~ are the frequencies of a thickness resonance, and is 
the origin of the dispersion curves. 

We will investigate the family of thickness resonance frequencies. To do this we will consider the limit 
problem, putting ¢ = 0. In this case (5.1) splits into two independent problems 

- ( ~ )  = O ~  - "~(~) - 0 )  (a )  upk --- O, u ~  = w k ( p )  (,,,pp - , , g  

(b) u~ = Uk (P), u~ ffi 0 (O~) -- 0) 

The first problem corresponds to longitudinal shear oscillations while the second corresponds to purely 
radial oscillations [7]. 

Theorem. AI(P), A2(p)mthe eigenvalues of the problems corresponding to longitudinal shear 
and purely radial oscillations as p ~ 0, are a denumerable set and can be represented in the form 

Al(p) = Ai0(P ) u All(p)Ai2(P) 

A2(p) = A21(P ) U A22(P) 
where 

1. A10(P) is a set consisting of the double eigenvalue f~ = 0 and 2(r - 1) eigenvalues of the form 

fz, = p)~% + o(p  ~)  

where 7 2 are non-zero eigenvalues of the homogeneous Jacobi algebraic system 

C X  - T z D X  = 0 

D = diaglld~ll, d~ = (p2 s - p~.)/(2/2) and C is a matrix, the same as in (2.2); 
2. All(P) is a set consisting of r sets of eigenvalues of the form 

nO) flo = ~'o0 + O(P s~ ) 

(6.1) 

where fl(~. is the root of the equation 

EjH(~1j) = 0 (6.2) 
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3. A12(P ) consists of r - 1 sets of eigenvalues of the form 

~t i  ---- ''Otit"t(I) + O(P sl ) 

where f2~  is the root of  the equation 

Em(el~) = 0 

4. A21(P ) consists of r sets of eigenvalues of the form 

f~tj - ~(2)  + O(p  S2 ) - . .ot j  

where f2(~. is the root of  the equation 

2 2 2 4 
t t j f l  PojpuEjoo (~2j) - 2t t je j  ~(PojEjol (~2j) + pljEjl0 (~2j)) + 4ej EjH (~2j) = 0 

5. A22(P) consists of r - 1 sets of eigenvalues of  the form 

~'~ti - -  t3(2) + 0 ( p 6 2  ) - -  ~,kOt i 

where ~ .  is the root  of the equation 

(6.3) 

(6.4) 

Ell l(e2/) = 0 (6.5) 

Here elk = f2/ek, eZt = D,/~tk; 81 = 1(82 = 1) if there are no roots that are the same among the roots 
of (6.2) and (6.3) ((6.4) and (6.5)), but with the condition that i # j + 1, i # j - 1, and 51 = 1/2 (52 = 
1/2), if for i = j - 1 or i = j + l  the corresponding equations have at least a pair of  similar roots. 

The eigenfunctions corresponding to A10(P) have the form 

wk, = wk~(p) + O(p) (6.6) 

The function w~0(p) is given by formula (2.8). 
We will consider the construction of asymptotic approximations in the neighbourhood of ( ~  t )  = 

(0, O). When f l  = 0 the point cc = O is a double eigenvalue of (5.1). Using methods of  branching theory 
[8] in the neighbourhood of  the point (~, t )  = (0, 0), the solution of eigenvalue problem (5.1) will be 
sought in the form 

tX = q l  ~ + q2 ~ 2  + . . . .  v k = r o t  + ~ v l t  + ... (6.7) 

Substituting (6.6) into (5.1) we obtain a certain recurrent system, after integrating which we 
obtain 

Vok = (0, T) 

(6.8) 

Here T is an arbitrary constant. It can be seen from (6.8) that in the neighbourhood of  the point 
(0, 0) the formula 

ct = q~II(l + O(II)) (6.9) 

describes the origin of the first dispersion curve. 
We will consider the behaviour of  the dispersion curves when 0c and ~ approach infinity. We will 

assume that the limit of their ratio is a certain finite quantity, i.e. lim(tl/ct) as ct --> oo, t2 --> oo. 

Dividing (5.1) by (X 2 and assuming c to be an eigenvalue parameter, we obtain a new eigenvalue 
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problem which will be the operator analogue of the problem with a small parameter with a leading 
derivative. We will investigate this problem using two iterative processes of the Vishik-Lyusternik method 
[9, 10]. 

Using the first iterative process we obtain values for the first term of the asymptotic expansion of 
the phase velocity c(~l = ek, c(~ = ~tk. The second iterative process is carried out in two versions: (1) in 
the region of the boundary surfaces p = P01, P = Pin, and (2) in the region of the interfaces 
p = 9u~(m = 1,2 . . . .  , n - l ) .  

In the first version the first stage of the second iterative process gives the curve of the problem, which, 
together with this addtitional condition that the solution should decrease at infinity, describes a Rayleigh 
wave, propagating along the free surface of the cylinder with phase velocity G. 

In the second versiion, for each interface p = pun in the first terms of the approximation we obtain 
the conjugation problem, which, together with the additional condition that the solution should decay 
with distance from the interface, describes a Stoneley wave, propagating with phase velocity ca. 

7. As an example we will consider a three-layer cylindrical waveguide with a soft filler. In this case 

"t 2 = ct (di] i + d~'~) (7.1) 

X ! =(XII,XI3), XII= Xo, Xi 3= ~d33) 

The first resonance frequency has the form 

fll = p~'tl + O(p~ ) (7.2) 

The corresponding; form of the oscillations is given by formula (6.6) and (7.1). 
These results enable us to conclude that in multilayer cylinders with alternating hard and soft layers at 

low frequencies there is more than one propagating wave, unlike a uniform cylinder of the same thickness. 
We will give some results of a numerical analysis of problem (5.1) for a three-layer cylindrical 

waveguide. We will use Godunov's discrete orthogonalization method [11] for this purpose. 
In Fig. 2 we have drawn the real part of the dispersion curves forp  = 10-2; mJmr = 0.2; P0i = 0.2; 

Pal = 0.5; P03 = 0.6; P13 = 1. 
The first dispersion branch, emerging from zero, as ~ increases from zero to 1.7, approximates to a 

straight line with a slope equal to the velocity of propagation of transverse waves in the hard layer. 
Beginning at f~ = 1.7, the slope approaches the phase velocity of longitudinal waves in the soft layer. 
When t~ is increased further, for the first curve the asymptote will be a straight line with a slope equal 
to cR. 

 j,f 

0 q a~8 

Fig. 2. 
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On the second dispersion branch, as f~ increases the curve approaches a straight line with a slope 
equal to the velocity of longitudinal waves in the hard layer. When 1.5 < f2 < 2.8 the slope approximates 
to the phase velocities of transverse waves in the hard layer. 

When ~ > 2.8, as f2 increases further, the slope approaches the phase velocities of longitudinal 
waves in the soft layer, etc. For the second curve the asymptote will be a straight line with a slope equal 
to C0 C1). 

Note that formula (7.2) gives the values of the first thickness resonance with an error of 7%. 
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